MMA Hydraulic Cylinders 'Mill Type' roundline cylinders for working pressures up to 250 bar aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding #### Introduction Introduction requirements. # 'Mill Type' Cylinders MMA Series | Contents | Page | |-------------------------------------|--------| | Design Features and Benefits | 3 | | Optional Features | 4 | | Servicing Features | 4 | | Dimensions - Round Flange Mountings | 5 | | Dimensions – Pivot Mountings | 6 | | Dimensions – Trunnion Mountings | 7 | | Dimensions – Foot Mountings | 8 | | Piston Rod Ends | 8 | | Accessories | 10 | | Mounting Information | 13 | | Cylinder Masses | 13, 19 | | Selecting the Cylinder Diameter | 14 | | Selecting the Piston Rod | 15 | | Long Stroke Cylinders | 16 | | Stop Tubes | 16 | | Ports | 17, 23 | | Cushioning | 18 | | Seals and Fluids | 20 | # **Standard Specifications** - Heavy Duty construction - Styles and dimensions to: CETOP RP73H, ISO 6022, DIN 24 333, AFNOR NF E48-025, VW 39D 921 The heavy duty series MMA cylinder has been designed for service in steel mills and in other arduous applications where a rugged, dependable cylinder is required. In addition to the standard cylinders featured in this catalogue, MMA cylinders can be designed and manufactured to suit individual customer - Rated pressure: 250 bar - Fatique-free at the rated pressure - Hydraulic mineral oil other fluids on request - Temperature range of standard seals: -20°C to +80°C - Construction: head and cap bolted to heavy steel flanges - Bore sizes: 50mm to 320mm - Piston rod diameters: 32mm to 220mm - Cushioning optional at both ends - Air bleeds optional at both ends - Tested in accordance with ISO 10100: 2001 # Parker – committed to your success Parker Hannifin is the global leader in motion and control technologies. We employ more than 58,000 people in 48 countries, providing our customers with technical excellence and first class customer service. Parker is the world's largest supplier of hydraulic cylinders for industrial applications. When you partner with Parker, you gain access to a vast range of resources designed to increase your productivity and profitability. - · CAD drawings - Custom solutions - Application guidance - Maintenance information - Product updates - Other language content - · Access to other Parker products and services # 3-D CAD New 3-D CAD software simplifies the process of selecting and drawing a cylinder, saving time and ensuring the accuracy of the finished design. Scan the QR code to view MMA cylinders on line at www.parker.com or contact your local Sales Office – see rear cover. Replacement Parts and Service How to Order Cylinders 21 23 # WARNING - USER RESPONSIBILITY FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE. This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise. The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors. To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems. # Offer of Sale Please contact your Parker representation for a detailed 'Offer of Sale'. ### 1 Piston Rod The piston rod is manufactured from precision ground, high tensile carbon alloy steel, hard chrome plated and polished to $0.2\mu m$ max. Piston rods up to 140mm in diameter are induction case hardened to Rockwell C54 minimum before chrome plating. This provides a 'dent resistant' surface, resulting in improved seal life. Piston rods of 160mm diameter and above can be case hardened on request. All rod and piston assemblies are designed to be fatigue free at full rated pressure. # 2 Head and Cap Retention The head and cap are bolted to heavy steel flanges, which are retained by threads at each end of the cylinder body. The resulting assembly is fatigue-free at its maximum rated pressure. # 3 Cylinder Body The heavy wall steel tubing is honed to a high surface finish, to minimise internal friction and prolong seal life. ### 4 & 5 Head and Cap Ends The head and cap are machined from steel and located into the cylinder body's internal diameter for added strength and precise alignment. To ensure leak-free performance, both the head and cap are sealed by 'O' rings which, in turn, are protected by anti-extrusion rings. # 6 & 7 Cushioning Optional cushions at the head and cap are progressive in action, providing controlled deceleration which reduces noise and shock loading, and prolongs machine life. The head end cushion is a self-centring sleeve, while the polished cap end spear is an integral part of the piston rod. Needle valves are provided at both ends of the cylinder for precise cushion adjustment, and are recessed and retained so that they cannot be inadvertently removed. Check valves at the head and cap ends of the cylinder minimize restriction to the start of a stroke, permitting full power and fast cycle times. The head end check valve is incorporated into the fully floating cushion sleeve, while the cap end employs a floating bronze cushion bush. # 8 Rod Gland and Bearings Seals are housed in a corrosion-resistant steel gland, featuring heavy duty polymer bearing rings to resist side loadings. Wide separation of these rings reduces bearing stresses, maximising the service life of the bearing. On bore sizes up to 100mm the rod gland is threaded into the head as illustrated above while, on larger bore sizes, the rod gland is bolted to the head. The polymer bearing rings, with the rod seals, are easily replaced on removal of the rod gland, and all components may be serviced without further disassembly of the cylinder. # 9 & 10 Gland and Piston Seals The gland seals provide efficient retention of pressurized fluid while preventing the ingress of contaminants. A variety of gland and piston seal options is available, to suit different applications – see page 4. MMA cylinders can also be designed and manufactured with seals to suit individual customer requirements. Please contact the factory with details of the application. # 11 Body End Seals To ensure leak-free performance, body end seals and gland/head seals are of radial construction, avoiding the problems of 'nibbling' and early failure associated with face-type seals. # **Gland and Piston Seal Options** See Illustrations, page 21 #### **Standard Option** The standard seals fitted to MMA cylinders provide excellent low speed and break-out performance and deliver exceptional working life in high cycle applications. They are suitable for use with Group 1 fluids (see page 20) and may be used for piston speeds up to 0.5m/s. Standard gland seals employ a polyurethane lipseal and a PTFE stepped seal. The piston is fitted with a heavy duty filled polymer seal and heavy duty wear rings. The wear rings prevent contact between the piston and cylinder bore and protect the piston seal from contaminants. # **Low Friction Option** Low friction seals are suitable for applications where very low friction and an absence of stick-slip are important. They are not suitable for holding loads in a fixed position. Low friction seals are available for use with all fluid groups and are suitable for piston speeds up to 1m/s. Low Friction gland seals comprise two low friction PTFE stepped seals and a heavy duty wiperseal, while the pistons employ a PTFE seal and PTFE wear rings. # **Chevron Option** The combination of chevron gland and chevron piston seals is designed to withstand harsh environments such as steel mills. They are suitable for use with all fluid groups and for piston speeds up to 0.5m/s, and may be used to hold a load in position. Chevron gland seals have a corrosion-resistant steel retainer, and a separate removable steel housing which retains the inner bearing rings. A heavy duty wiper seal prevents the ingress of contaminants. Chevron pistons feature a two-piece piston with a wide bearing ring mounted between chevron seals. # **Load Holding Option** Suitable for applications where loads are required to be held in position, the Load Holding option combines the low friction performance and long life of the standard gland seals with the rugged qualities of the chevron piston seal. The load holding option may be used for piston speeds up to 0.5m/s and is suitable for use with Group 1 fluids. # Air Bleeds Available as an option at both ends, air bleeds are recessed into the head and cap and retained so they cannot be inadvertently removed. The air bleed location, in relation to the supply port location, must be specified on the order – see page 23. ### **Gland Drains** The tendency of hydraulic fluid to adhere to the piston rod can result in an accumulation of fluid in the cavity between the seals under certain operating conditions. This may occur with long stroke cylinders, where there is a constant back pressure as in differential circuitry, or where the ratio of the extend speed to the retract speed is greater than 2 to 1. Gland drains should be piped back to the fluid reservoir, which should be located below the level of
the cylinder. # **Position Switches and Feedback Devices** Non-contacting position switches and linear position transducers of various types may be fitted to MMA series cylinders. Please contact the factory for further details. # **Rod End Bellows** Exposed rod surfaces that are subjected to air hardening contaminants should be protected by rod end bellows. Longer rod extensions are required to accommodate their collapsed length – please consult the factory for details. # **Rod Material** As an alternative to the normal piston rod material, stainless steel and other special materials and finishes can be supplied. # **Metallic Rod Wipers** For applications where contaminants may adhere to the extended piston rod and thereby cause premature failure of gland seals, the use of a metallic rod wiper in place of the standard wiper seal is recommended. # **Special Designs** Alternative sealing arrangements, special mounting styles, higher or lower rated pressure designs, welded cap ends to reduce overall length (non-cushioned only), larger bores and alternative rod sizes are just a few of the special requirements which can be accommodated by our design and engineering staff. #### **Marine Environments** MMA cylinders can be supplied with modifications to material and paint specifications which make them suitable for operation in a marine environment. Please consult the factory. # **Servicing Features** The MMA series has been designed to make maintenance as easy as possible, by incorporating the following design features: - Removable Gland Rod bearing and rod seals can be replaced without completely dismantling the cylinder. For chevron glands, a thread is machined on the outside diameter of the seal housing to assist extraction. - Chamfers at both ends of the cylinder body ease assembly of the head and cap and insertion of the piston seals. - Retaining flanges are removable, allowing separate replacement of the cylinder body. Flanges are spaced from the head and cap to allow the bolts to be sawn through in the event of severe damage or corrosion. - High tensile bolts are used for ease of maintenance. # 'Mill Type' Cylinders **MMA Series** **Style MF3**Head Circular Flange Cap Circular Flange Accurate location of 'B' provided as standard on model MF3 only. # Dimensions - MF3 and MF4 See also Rod End Dimensions, page 9 | Bore | Rod | Rod | B ^{f8} | D | EE | | | | | VD | | | Min. | | + Stroke | | |------|--------|------------|------------------------|-----|--------------------------------|----|------|-----|-----|-----|----|-----|--------|-----|-----------|-----| | Ø | No. | Ø | &
BA ^{H8} | max | (BSPP) | F | FB | FC | UC | min | WC | Y | Stroke | PJ | ZB
max | ZP | | 50 | 1
2 | 32
36 | 63 | 108 | G ¹ / ₂ | 25 | 13.5 | 132 | 155 | 4 | 22 | 98 | 20 | 120 | 244 | 265 | | 63 | 1 2 | 40
45 | 75 | 124 | G ³ / ₄ | 28 | 13.5 | 150 | 175 | 4 | 25 | 112 | 30 | 133 | 274 | 298 | | 80 | 1 2 | 50
56 | 90 | 148 | G ³ / ₄ | 32 | 17.5 | 180 | 210 | 4 | 28 | 120 | 20 | 155 | 305 | 332 | | 100 | 1 2 | 63
70 | 110 | 175 | G1 | 36 | 22 | 212 | 250 | 5 | 32 | 134 | 25 | 171 | 340 | 371 | | 125 | 1 2 | 80
90 | 132 | 208 | G1 | 40 | 22 | 250 | 290 | 5 | 36 | 153 | 50 | 205 | 396 | 430 | | 140 | 1 2 | 90
100 | 145 | 255 | G1¹/₄ | 40 | 26 | 300 | 340 | 5 | 36 | 181 | 50 | 208 | 430 | 465 | | 160 | 1 2 | 100
110 | 160 | 270 | G1 ¹ / ₄ | 45 | 26 | 315 | 360 | 5 | 40 | 185 | 50 | 235 | 467 | 505 | | 180 | 1 2 | 110
125 | 185 | 315 | G1 ¹ / ₄ | 50 | 33 | 365 | 420 | 5 | 45 | 205 | 20 | 250 | 505 | 550 | | 200 | 1 2 | 125
140 | 200 | 330 | G1 ¹ / ₄ | 56 | 33 | 385 | 440 | 5 | 45 | 220 | 20 | 278 | 550 | 596 | | 250 | 1 2 | 160
180 | 250 | 412 | G1 ¹ / ₂ | 63 | 39 | 475 | 540 | 8 | 50 | 260 | 20 | 325 | 652 | 703 | | 320 | 1 2 | 200
220 | 320 | 510 | G2 | 80 | 45 | 600 | 675 | 8 | 56 | 310 | 20 | 350 | 764 | 830 | # **Pivot Mountings** # Dimensions - MP3 and MP5 See also Rod End Dimensions, page 9 | Bore | Rod | Rod | BW | CD H9 | D | EE | EW h12 | L | | MR | | Min. | + St | roke | |------|--------|------------|---------|-----------------------|-----|--------------------------------|------------------------|---------|------|---------|-----|--------|------|------------| | Ø | No. | Ø | &
BX | &
CX ^{H7} | max | (BSPP) | &
EX ^{h12} | &
LT | LX | &
MS | Υ | Stroke | PJ | XC &
XO | | 50 | 1
2 | 32
36 | 27 | 32 | 108 | G¹/ ₂ | 32 | 61 | 38 | 35 | 98 | 20 | 120 | 305 | | 63 | 1 2 | 40
45 | 35 | 40 | 124 | G ³ / ₄ | 40 | 74 | 50 | 50 | 112 | 30 | 133 | 348 | | 80 | 1 2 | 50
56 | 40 | 50 | 148 | G ³ / ₄ | 50 | 90 | 61.5 | 61.5 | 120 | 20 | 155 | 395 | | 100 | 1 2 | 63
70 | 52 | 63 | 175 | G1 | 63 | 102 | 71 | 66 | 134 | 25 | 171 | 442 | | 125 | 1 2 | 80
90 | 60 | 80 | 208 | G1 | 80 | 124 | 90 | 90 | 153 | 50 | 205 | 520 | | 140 | 1 2 | 90
100 | 65 | 90 | 255 | G1 ¹ / ₄ | 90 | 150 | 113 | 113 | 181 | 50 | 208 | 580 | | 160 | 1 2 | 100
110 | 84 | 100 | 270 | G1 ¹ / ₄ | 100 | 150 | 112 | 112 | 185 | 50 | 235 | 617 | | 180 | 1 2 | 110
125 | 88 | 110 | 315 | G1¹/₄ | 110 | 185 | 129 | 118 | 205 | 20 | 250 | 690 | | 200 | 1 2 | 125
140 | 102 | 125 | 330 | G1 ¹ / ₄ | 125 | 206 | 145 | 131 | 220 | 20 | 278 | 756 | | 250 | 1 2 | 160
180 | 130 | 160 | 412 | G1 ¹ / ₂ | 160 | 251 | 178 | 163 | 260 | 20 | 325 | 903 | | 320 | 1
2 | 200
220 | 162 | 200 | 510 | G2 | 200 | 316 | 230 | 209 | 310 | 20 | 350 | 1080 | # **Trunnion Mounting** **Style MT4**Intermediate Trunnion **Note:** XV Dimension to be specified by customer. Where minimum dimension is unacceptable, please consult factory. # Dimensions - MT4 See also Rod End Dimensions, page 9 and Trunnion Blocks, page 13 | Bore | Rod | Rod | | D | EE | TD | | тм | UV | VV | | Min. | | + Stroke | | |------|--------|------------|-----|-----|--------------------------------|----------|-----|-----|-----|-----------|-----|--------|-----|-----------|-----------| | Ø | No. | Ø | BD | max | (BSPP) | TD
f8 | TL | h13 | max | XV
min | Υ | Stroke | PJ | XV
max | ZB
max | | 50 | 1
2 | 32
36 | 38 | 108 | G¹/ ₂ | 32 | 25 | 112 | 108 | 187 | 98 | 55 | 120 | 132 | 244 | | 63 | 1
2 | 40
45 | 48 | 124 | G ³ / ₄ | 40 | 32 | 125 | 124 | 212 | 112 | 75 | 133 | 137 | 274 | | 80 | 1
2 | 50
56 | 58 | 148 | G ³ / ₄ | 50 | 40 | 150 | 148 | 245 | 120 | 90 | 155 | 155 | 305 | | 100 | 1
2 | 63
70 | 73 | 175 | G1 | 63 | 50 | 180 | 175 | 280 | 134 | 120 | 171 | 160 | 340 | | 125 | 1
2 | 80
90 | 88 | 208 | G1 | 80 | 63 | 224 | 218 | 340 | 153 | 160 | 205 | 180 | 396 | | 140 | 1
2 | 90
100 | 98 | 255 | G1 ¹ / ₄ | 90 | 70 | 265 | 260 | 380 | 181 | 180 | 208 | 200 | 430 | | 160 | 1
2 | 100
110 | 108 | 270 | G1 ¹ / ₄ | 100 | 80 | 280 | 280 | 400 | 185 | 180 | 235 | 220 | 467 | | 180 | 1
2 | 110
125 | 118 | 315 | G1 ¹ / ₄ | 110 | 90 | 320 | 315 | 410 | 205 | 170 | 250 | 240 | 505 | | 200 | 1
2 | 125
140 | 133 | 330 | G1 ¹ / ₄ | 125 | 100 | 335 | 330 | 450 | 220 | 190 | 278 | 260 | 550 | | 250 | 1 2 | 160
180 | 180 | 412 | G1¹/₂ | 160 | 125 | 425 | 412 | 540 | 260 | 240 | 325 | 300 | 652 | | 320 | 1 2 | 200
220 | 220 | 510 | G2 | 200 | 160 | 530 | 510 | 625 | 310 | 300 | 350 | 325 | 764 | # 'Mill Type' Cylinders **MMA Series** # Foot Mounting, Piston Rod End Data Style MS2 **Foot Mounting** (Not to ISO 6022) Note: The MS2 mounting should only be used where the stroke is at least half of the bore diameter or where the cylinder operates below 160 bar. # **Dimensions - MS2** See also Rod End Dimensions, page 9 | Bore | Rod | Rod | D | EE | LH | SB | | | | | | | | | Min. | 4 | - Stroke | • | |------|--------|------------|-----|--------------------------------|-----|------|-------------------|-----|------|-----|-----|-----|-------|-----|--------|-----|----------|-----------| | Ø | No. | Ø | max | (BSPP) | h10 | H13 | SC | SD | SE | ST | TS | US | XS | Υ | Stroke | PJ | SS | ZB
max | | 50 | 1
2 | 32
36 | 108 | G ¹ / ₂ | 60 | 11 | 20.5 1 | 18 | 15.5 | 32 | 135 | 160 | 130.0 | 98 | 0 | 120 | 55 | 244 | | 63 | 1
2 | 40
45 | 124 | G ³ / ₄ | 68 | 13.5 | 24.5 ¹ | 20 | 17.5 | 37 | 155 | 185 | 147.5 | 112 | 20 | 133 | 55 | 274 | | 80 | 1 2 | 50
56 | 148 | G ³ / ₄ | 80 | 17.5 | 22.5 | 26 | 22.5 | 42 | 185 | 225 | 170.5 | 120 | 35 | 155 | 55 | 305 | | 100 | 1 2 | 63
70 | 175 | G1 | 95 | 22 | 27.5 | 33 | 27.5 | 52 | 220 | 265 | 192.5 | 134 | 55 | 171 | 55 | 340 | | 125 | 1 2 | 80
90 | 208 | G1 | 115 | 26 | 30.0 | 40 | 30.0 | 62 | 270 | 325 | 230.0 | 153 | 65 | 205 | 60 | 396 | | 140 | 1 2 | 90
100 | 255 | G1 ¹ / ₄ | 135 | 30 | 35.5 | 48 | 35.5 | 77 | 325 | 390 | 254.5 | 181 | 80 | 208 | 61 | 430 | | 160 | 1 2 | 100
110 | 270 | G1¹/₄ | 145 | 33 | 37.5 | 48 | 37.5 | 77 | 340 | 405 | 265.5 | 185 | 80 | 235 | 79 | 467 | | 180 | 1 2 | 110
125 | 315 | G1 ¹ / ₄ | 165 | 40 | 42.5 ¹ | 60 | 40.5 | 87 | 390 | 465 | 287.5 | 205 | 70 | 250 | 85 | 505 | | 200 | 1 2 | 125
140 | 330 | G1 ¹ / ₄ | 170 | 40 | 45.0 ¹ | 60 | 43.0 | 87 | 405 | 480 | 315.0 | 220 | 60 | 278 | 90 | 550 | | 250 | 1 2 | 160
180 | 412 | G1 ¹ / ₂ | 215 | 52 | 50.0 ¹ | 76 | 47.0 | 112 | 520 | 620 | 360.0 | 260 | 60 | 325 | 120 | 652 | | 320 | 1 2 | 200
220 | 510 | G2 | 260 | 62 | 60.0 ¹ | 110 | 57.0 | 152 | 620 | 740 | 425.0 | 310 | 80 | 350 | 120 | 764 | ¹ Mounting holes offset from centre line # **Piston Rod End Styles** MMA cylinders are available with standard metric male and female rod ends to ISO 4395. They can also be supplied with other rod end threads, eg: ISO metric coarse, Unified, British Standard etc., or to the customer's special requirements. # Rod End Codes 4 and 9 Each cylinder bore size is offered with two diameters of piston rod - the smaller is designated no. 1 and the larger, no. 2. The standard male rod end threads, to ISO 6022, are designated code 4 and female threads are designated code 9. Female threads are only available with the no. 2 rod size. #### **Rod End Code 3** Non-standard
rod ends are designated code 3. Orders for these should include dimensioned sketches and descriptions, showing dimensions KK or KF, A or AF, rod stand-out W and the thread form required. ### **Wrench Flats** Piston rods up to and including 90mm in diameter are supplied with flats for a spanner wrench while rods above 90mm in diameter feature four drilled holes to accept a pin wrench. See dimension D in the table on page 9. # **Piston Rod End Data** # **Rod End Code 4** Bore Ø 50mm - 100mm # **Rod End Code 9** Bore Ø 50mm - 100mm # **Rod End Code 4** Bore Ø 125mm - 320mm # **Rod End Code 9** Bore Ø 125mm - 320mm # Rod End Dimensions See also Cylinder Dimensions, pages 5-8 | Bore
Ø | Rod
No. | MM
Rod
Ø | A & AF | С | D | К | KK
Code 4 | KF
Code 9 | NA | VE
max | w | WF | |-----------|------------|----------------|--------|----|--------------------|----|--------------|--------------|------------|-----------|------|-----| | 50 | 1
2 | 32
36 | 36 | 15 | 28
32 | 18 | M27x2 | –
M27x2 | 31
35 | - | 22 | - | | 63 | 1
2 | 40
45 | 45 | 18 | 34
36 | 21 | M33x2 | _
M33x2 | 38
43 | - | 25 | _ | | 80 | 1
2 | 50
56 | 56 | 20 | 43
46 | 24 | M42x2 | –
M42x2 | 48
54 | _ | 28 | _ | | 100 | 1
2 | 63
70 | 63 | 23 | 53
60 | 27 | M48x2 | _
M48x2 | 60
67 | _ | 32 | _ | | 125 | 1
2 | 80
90 | 85 | 27 | 65
75 | 31 | M64x3 | _
M64x3 | 77
87 | 39 | 36.5 | 70 | | 140 | 1
2 | 90
100 | 90 | 27 | 75
Ø10 x 4 | 31 | M72x3 | –
М72х3 | 87
96 | 39 | 36.5 | 70 | | 160 | 1
2 | 100
110 | 95 | 31 | Ø10 x 4
Ø10 x 4 | 35 | M80x3 | _
M80x3 | 96
106 | 43 | 40.5 | 78 | | 180 | 1
2 | 110
125 | 105 | 36 | Ø10 x 4
Ø10 x 4 | 40 | M90x3 | _
M90x3 | 106
121 | 47 | 45.5 | 87 | | 200 | 1
2 | 125
140 | 112 | 36 | Ø12 x 4
Ø12 x 4 | 40 | M100x3 | _
M100x3 | 121
136 | 51 | 45.5 | 91 | | 250 | 1
2 | 160
180 | 125 | 38 | Ø15 x 4
Ø15 x 4 | 42 | M125x4 | –
M125x4 | 155
175 | 59 | 50.5 | 101 | | 320 | 1
2 | 200
220 | 160 | 44 | Ø15 x 4
Ø15 x 4 | 48 | M160x4 | _
M160x4 | 194
214 | 74 | 56.5 | 122 | # **Accessories** **Accessory Selection**The accessories and corresponding mounting brackets supplied for use at the piston rod end of a cylinder are selected by reference to the rod end thread, shown on page 9, while the same mounting brackets, when used at the cap end of pivot mounted cylinders, are selected by pin size - see dimensions CD and CX on page 6. #### **Rod End** | Rod clevis and pivot pin | - page 10 | |--------------------------------|-----------| | Rod eye with plain bearing | - page 11 | | Clevis bracket and pivot pin | - page 11 | | Rod eye with spherical bearing | - page 12 | | Mounting bracket and pivot pin | - page 12 | #### Cap End | Oap Ella | | |--|---------------------------| | Clevis bracket and pivot pin – for style | | | MP3 and MP5 mountings | page 11 | | Mounting bracket and pivot pin – for style | | | MP3 and MP5 mountings | page 12 | | | | # **Cylinder Body** Trunnion blocks for style MT4 mounting - page 13 # Rod Clevis and Pivot Pin AP2 ISO 8132 For larger sizes, please consult factory. | Part
No. | В | CE
js13 | CK
H9/f8 | CL
h16 | CM
A13 | ER
max | KK | LE
min | Mass
kg | Nominal Force
kN | |-------------|-----|------------|-------------|-----------|------------------|-----------|-------|-----------|------------|---------------------| | 0962130032 | 65 | 80 | 32 | 70 | 32 | 40 | M27x2 | 41 | 2.2 | 50 | | 0962130040 | 80 | 97 | 40 | 90 | 40 | 50 | M33x2 | 51 | 4.4 | 80 | | 0962130050 | 100 | 120 | 50 | 110 | 50 | 63 | M42x2 | 63 | 7.6 | 125 | | 0962130063 | 120 | 140 | 63 | 140 | 63 | 71 | M48x2 | 75 | 17.7 | 200 | | 0962130080 | 140 | 180 | 80 | 170 | 80 | 90 | M64x3 | 94 | 30.6 | 320 | # Rod Eye with Plain Bearing AP4 ISO 8132 | Part No. | AV
min | BX
max | C
max | CA
JS13 | СК
н9 | EM
h12 | ER
max | KK | LE
min | N
max | Mass
kg | Nominal
Force
kN | |----------|-----------|-----------|----------|------------|-----------------|-----------|-----------|--------|-----------|----------|------------|------------------------| | 148731 | 37 | 28 | 70 | 80 | 32 | 32 | 40 | M27x2 | 30 | 38 | 1.2 | 50 | | 148732 | 46 | 34 | 89 | 97 | 40 | 40 | 50 | M33x2 | 39 | 47 | 2.1 | 80 | | 148733 | 57 | 42 | 108 | 120 | 50 | 50 | 63 | M42x2 | 47 | 58 | 4.4 | 125 | | 148734 | 64 | 53.5 | 132 | 140 | 63 | 63 | 72.5 | M48x2 | 58 | 70 | 7.6 | 200 | | 148735 | 86 | 68 | 168 | 180 | 80 | 80 | 92 | M64x3 | 74 | 91 | 14.5 | 320 | | 148737 | 96 | 85.5 | 210 | 210 | 100 | 100 | 114 | M80x3 | 94 | 110 | 28 | 500 | | 148739 | 113 | 105 | 262 | 260 | 125 | 125 | 160 | M100x3 | 116 | 135 | 43 | 800 | | 148740 | 126 | 133 | 326 | 310 | 160 | 160 | 200 | M125x4 | 145 | 165 | 80 | 1250 | | 148741 | 161 | 162 | 460 | 390 | 200 | 200 | 250 | M160x4 | 190 | 215 | 165 | 2000 | # Clevis Bracket and Pivot Pin AB4 ISO 8132 Form A For larger sizes, please consult factory. | Part No. | CK
H9/m6 | CL
h16 | CM
A13 | FL
JS12 | НВ
н13 | LE
min | MR
max | RC
JS14 | TB
JS14 | UH
max | UR
max | Mass
kg | Nominal
Force
kN | |------------|-------------|-----------|-----------|------------|------------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------------------| | 0962110032 | 32 | 70 | 32 | 65 | 17.5 | 43 | 32 | 50 | 110 | 143 | 85 | 3.5 | 50 | | 0962110040 | 40 | 90 | 40 | 76 | 22 | 52 | 40 | 65 | 130 | 170 | 108 | 6 | 80 | | 0962110050 | 50 | 110 | 50 | 95 | 26 | 65 | 50 | 80 | 170 | 220 | 130 | 12 | 125 | | 0962110063 | 63 | 140 | 63 | 112 | 33 | 75 | 63 | 100 | 210 | 270 | 160 | 19 | 200 | | 0962110080 | 80 | 170 | 80 | 140 | 39 | 95 | 80 | 125 | 250 | 320 | 210 | 38 | 320 | # **Accessories** # Rod Eye with Spherical Bearing AP6 ISO 8132 | Part No. | AV
min | C
max | CH
js13 | CN
H7 | EF
max | EN
h12 | EU
max | KK | LF
min | N
max | Mass
kg | Nominal
Force
kN | |----------|-----------|----------|------------|----------|-----------|-----------|-----------|--------|-----------|----------|------------|------------------------| | 145241 | 37 | 72 | 80 | 32 | 40 | 32 | 28 | M27x2 | 30 | 38 | 1.2 | 50 | | 145242 | 46 | 90 | 97 | 40 | 50 | 40 | 34 | M33x2 | 39 | 47 | 2.1 | 80 | | 145243 | 57 | 110 | 120 | 50 | 63 | 50 | 42 | M42x2 | 47 | 58 | 4.4 | 125 | | 145244 | 64 | 136 | 140 | 63 | 72.5 | 63 | 53.5 | M48x2 | 58 | 70 | 7.6 | 200 | | 145245 | 86 | 170 | 180 | 80 | 92 | 80 | 68 | M64x3 | 74 | 91 | 14.5 | 320 | | 148724 | 96 | 212 | 210 | 100 | 114 | 100 | 85.5 | M80x3 | 94 | 110 | 28 | 500 | | 148726 | 113 | 265 | 260 | 125 | 160 | 125 | 105 | M100x3 | 116 | 135 | 43 | 800 | | 148727 | 126 | 326 | 310 | 160 | 200 | 160 | 133 | M125x4 | 145 | 165 | 80 | 1250 | | 148728 | 161 | 420 | 390 | 200 | 250 | 200 | 165 | M160x4 | 190 | 215 | 170 | 2000 | # Mounting Bracket and Pivot Pin AB3 ISO 8132 Form B For larger sizes, please consult factory. | Part No. | CK
H9/m6 | CL
h16 | CM
A13 | CO
N9 | FG
JS14 | FL
js13 | FO
JS14 | HB
H13 | KC
+0.3 | LE
min | MR
max | RF
js13 | RG
js13 | UK
max | UX
max | Mass
kg | Nominal
Force
kN | |------------|-------------|-----------|-----------|----------|------------|------------|------------|-----------|------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------------------| | 0962120032 | 32 | 70 | 32 | 25 | 14.5 | 65 | 6 | 17.5 | 5.4 | 43 | 32 | 110 | 110 | 145 | 145 | 5 | 50 | | 0962120040 | 40 | 90 | 40 | 36 | 17.5 | 76 | 6 | 22 | 8.4 | 52 | 40 | 140 | 125 | 185 | 170 | 9.6 | 80 | | 0962120050 | 50 | 110 | 50 | 36 | 25 | 95 | - | 26 | 8.4 | 65 | 50 | 165 | 150 | 215 | 200 | 15.5 | 125 | | 0962120063 | 63 | 140 | 63 | 50 | 33 | 112 | - | 33 | 11.4 | 75 | 63 | 210 | 170 | 270 | 230 | 27.5 | 200 | | 0962120080 | 80 | 170 | 80 | 50 | 45 | 140 | - | 39 | 11.4 | 95 | 80 | 250 | 210 | 320 | 280 | 47 | 320 | ### Trunnion Block AT4 ISO 8132 #### **Trunnions** On the 320mm bore cylinder, the trunnion is welded to the cylinder body. On all other bore sizes, the trunnion assembly is threaded to the cylinder body and secured with a locking ring. If a different arrangement is needed to suit a particular application, please consult the factory. Trunnions require lubricated pillow blocks with minimum bearing clearances. Blocks should be mounted and aligned to eliminate bending moments on the trunnion pins. | Bore
Ø | Part
No. | CO
N9 | CR
H7 | FK
JS12 | FN
max | FS
js13 | HB
H13 | KC
+0.3 | NH
max | TH
js13 | UL
max | Mass
kg | Nominal
Force
kN | |-----------|-------------|----------|----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|------------------------| | 50 | 149335 | 25 | 32 | 65 | 100 | 15 | 17.5 | 5.4 | 33 | 110 | 150 | 4.7 | 50 | | 63 | 149336 | 36 | 40 | 76 | 120 | 16 | 22 | 8.4 | 41 | 125 | 170 | 7.8 | 80 | | 80 | 149337 | 36 | 50 | 95 | 140 | 20 | 26 | 8.4 | 51 | 160 | 210 | 14.3 | 125 | | 100 | 149338 | 50 | 63 | 112 | 180 | 25 | 33 | 11.4 | 61 | 200 | 265 | 24 | 200 | | 125 | 149339 | 50 | 80 | 140 | 220 | 31 | 39 | 11.4 | 81 | 250 | 325 | 53 | 320 | For larger sizes, please consult factory. # **Cylinder Mounting Information** ### **Mounting Bolts** It is recommended that mounting bolts with a strength to ISO 898/1 grade 12.9 should be used for fixing cylinders to the machine or base. Mounting bolts should be torque loaded to their manufacturer's recommended figures. # **Head and Cap Retention Bolts** The head and cap retention bolts on MMA Series cylinders are torque loaded on assembly in the factory. If damage or corrosion is found on removal, the old bolts must be
discarded and replacement bolts with a minimum strength to ISO 898/1 grade 12.9 must be fitted. Head and cap bolts should always be tightened progressively in a diagonal sequence and torque loaded to the figures shown in the table. | Bore | Flange E | Bolts | |------|---------------------|--------------| | Ø | Torque
Load (Nm) | Bolt
Size | | 50 | 26-28 | M8 | | 63 | 51-54 | M10 | | 80 | 112-118 | M12 | | 100 | 157-165 | M14 | | 125 | 247-260 | M16 | | 140 | 247-200 | IVITO | | 160 | 456-480 | M20 | | 180 | 430-460 | IVIZU | | 200 | 668-692 | M22 | | 250 | 1112-1170 | M27 | | 320 | 1425-1500 | M33 | # **Spherical Bearings** All spherical bearings should be re-packed with grease periodically. In unusual or severe working conditions, consult the factory regarding the suitability of the bearing chosen. # **Cylinder Masses** | _ | | | | | | | |------|-----|--------------|--------------|------------|------------|--------------| | Bore | Rod | Mountii | ng Styles at | Zero Stro | ke, in kg | per
10mm | | Ø | No. | MF3 &
MF4 | MP3 &
MP5 | MT4 | MS2 | Stroke
kg | | 50 | 1 | 14.8 | 16.2 | 16.6 | 16.6 | 0.2 | | | 2 | 17.8 | 16.2 | 16.7 | 16.6 | 0.2 | | 63 | 1 | 27 | 26 | 26 | 24 | 0.3 | | | 2 | 27 | 26 | 26 | 24 | 0.3 | | 80 | 1 | 39 | 37 | 37 | 35 | 0.5 | | | 2 | 39 | 37 | 37 | 35 | 0.5 | | 100 | 1 | 61 | 59 | 59 | 56 | 0.6 | | | 2 | 61 | 59 | 59 | 56 | 0.7 | | 125 | 1 | 103 | 103 | 105 | 95 | 0.9 | | | 2 | 104 | 104 | 105 | 96 | 1.0 | | 140 | 1 | 164 | 168 | 171 | 158 | 1.1 | | | 2 | 164 | 168 | 171 | 158 | 1.2 | | 160 | 1 | 198 | 205 | 204 | 188 | 1.6 | | | 2 | 199 | 205 | 205 | 188 | 1.7 | | 180 | 1 | 289 | 290 | 292 | 274 | 2.0 | | | 2 | 289 | 291 | 293 | 275 | 2.2 | | 200 | 1 2 | 356
357 | 377
378 | 363
364 | 335
336 | 2.2
2.4 | | 250 | 1 2 | 646
647 | 698
700 | 685
687 | 614
616 | 3.2
3.6 | | 320 | 1 | 1180 | 1294 | 1239 | 1116 | 5.1 | | | 2 | 1230 | 1345 | 1290 | 1118 | 5.6 | | | | | | | | | Where applicable, accessory masses can be added to give a gross mass – see page 10. # 'Mill Type' Cylinders # **MMA Series** # **Selecting the Cylinder Diameter** #### **Push Force** If the piston rod is in compression, use the Push Force table below. - 1. Identify the operating pressure closest to that required. - 2. In the same column, identify the force required to move the load (always rounding up). - 3. In the same row, look along to the cylinder bore required. If the cylinder envelope dimensions are too large, increase the operating pressure, if possible, and repeat the exercise. | Bore | Cylinder | | Cylinder Push Force in kN | | | | | | | | |------|------------------|-----------|---------------------------|------------|------------|------------|--|--|--|--| | Ø | Bore Area
mm² | 50
bar | 100
bar | 150
bar | 200
bar | 250
bar | | | | | | 50 | 1964 | 10 | 20 | 30 | 40 | 50 | | | | | | 63 | 3117 | 15 | 31 | 46 | 63 | 79 | | | | | | 80 | 5026 | 25 | 51 | 76 | 102 | 128 | | | | | | 100 | 7854 | 40 | 80 | 120 | 160 | 200 | | | | | | 125 | 12272 | 62 | 125 | 187 | 250 | 312 | | | | | | 140 | 15386 | 77 | 154 | 231 | 308 | 385 | | | | | | 160 | 20106 | 102 | 205 | 307 | 410 | 512 | | | | | | 180 | 25434 | 127 | 254 | 381 | 508 | 635 | | | | | | 200 | 31416 | 160 | 320 | 480 | 640 | 801 | | | | | | 250 | 49087 | 250 | 500 | 750 | 1000 | 1250 | | | | | | 320 | 80425 | 410 | 820 | 1230 | 1640 | 2050 | | | | | # inPHorm For more comprehensive information on the calculation of cylinder bore size required, please refer to the European cylinder inPHorm selection programme HY07-1260/Eur. #### **Pull Force** If the piston rod is in tension, use the Reduction in Cylinder Push Force table below. To determine the pull force: - Follow the procedure for Push Force applications, as described. - Using the Reduction in Cylinder Push Force table below, establish the force indicated according to the rod diameter and pressure selected. - 3. Deduct this from the original push force. The resulting figure is the net force available to move the load. If this force is not large enough, repeat the process again but increase the system operating pressure or cylinder diameter if possible. If in doubt, please contact our design engineers. | Piston
Rod | Piston
Rod Area | Reduc | ction in C | ylinder Pu | ush Force | in kN | |---------------|--------------------|-----------|------------|------------|------------|------------| | Ø | mm ² | 50
bar | 100
bar | 150
bar | 200
bar | 250
bar | | 32 | 804 | 4 | 8 | 12 | 16 | 20 | | 36 | 1018 | 5 | 10 | 15 | 20 | 25 | | 40 | 1257 | 6 | 12 | 19 | 24 | 31 | | 45 | 1590 | 8 | 16 | 24 | 32 | 40 | | 50 | 1964 | 10 | 19 | 29 | 38 | 49 | | 56 | 2463 | 12 | 25 | 37 | 50 | 62 | | 63 | 3386 | 17 | 34 | 51 | 68 | 85 | | 70 | 3848 | 19 | 39 | 58 | 78 | 98 | | 80 | 5027 | 25 | 50 | 76 | 100 | 126 | | 90 | 6362 | 32 | 64 | 97 | 129 | 162 | | 100 | 7855 | 39 | 79 | 118 | 158 | 196 | | 110 | 9503 | 48 | 96 | 145 | 193 | 242 | | 125 | 12274 | 61 | 123 | 184 | 246 | 307 | | 140 | 15394 | 78 | 156 | 235 | 313 | 392 | | 160 | 20109 | 100 | 201 | 301 | 402 | 503 | | 180 | 25447 | 129 | 259 | 389 | 518 | 648 | | 200 | 31420 | 157 | 314 | 471 | 628 | 785 | | 220 | 38013 | 198 | 387 | 581 | 775 | 969 | # 'Mill Type' Cylinders #### **MMA Series** # **Selecting the Piston Rod** To select a piston rod for thrust (push) conditions: - Determine the type of mounting style and rod end connection to be used. From the Stroke Factor Selection table below, identify which factor corresponds to the application. - Using this stroke factor, determine the 'basic length' from the equation: Basic Length = Net Stroke x Stroke Factor (The Piston Rod Selection Chart on page 16 applies to piston rods with standard rod extensions beyond the face of the gland retainer. For rod extensions greater than standard, add the increase to the stroke to arrive at the 'basic length'.) - 3. Find the load imposed for the thrust application by multiplying the full bore area of the cylinder by the system pressure, or by referring to the Push and Pull Force tables on page 14. - 4. Using the Piston Rod Selection Chart on page 16, look along the values for 'basic length' and 'thrust' as found in 2 and 3 above, and note the point of intersection. The correct piston rod size is read from the diagonally curved line **above** the point of intersection. For tensile (pull) loads, the rod size is selected by specifying standard cylinders with standard rod diameters and using them at or below the rated pressure. #### **Stroke Factor Selection** | Cylinder
Mounting Style | Rod End Connection and Load Guidance | Type of Mounting | Apply Stroke
Factor of | |---|--|------------------|---------------------------| | MF3 Front flange and MS2 foot mountings | Load is fixed and rigidly guided | | 0.5 | | MF3 Front flange and MS2 foot mountings | Load is pivoted and rigidly guided | | 0.7 | | MF4 Rear flange mounting | Load is fixed and rigidly guided | | 1.0 | | MF4 Rear flange and trunnion mountings | Load is pivoted and rigidly guided | | 1.5 | | MF3 Front flange and MS2 foot mountings | Load is supported but not rigidly guided | | 2.0 | | MP3 Rear pivot
MP5 mountings | Load is pivoted and rigidly guided | | 2.0 | | MF4 Rear flange mounting | Load is supported but not rigidly guided | | 4.0 | | MP3 Rear pivot
MP5 mountings | Load is supported but not rigidly guided | | 4.0 | # inPHorm For accurate sizing, please refer to the European cylinder inPHorm selection programme HY07-1260/Eur. # **Piston Rod Selection Chart** # **Long Strokes and Stop Tubes** For tension (pull) loads, the rod size is selected by specifying standard cylinders with standard rod diameters, and using them at or below the rated pressure. For long stroke cylinders under compressive (push) loads, a stop tube should be used to reduce bearing stress. The required length of stop tube is read from the vertical columns on the right of the chart, above, by following the horizontal band within which the point of intersection lies. Note that stop tube requirements differ for fixed and pivot mounted cylinders. If the required length of stop tube is in the shaded region marked 'consult factory', please submit the following information: - 1. Cylinder mounting style. - 2. Rod end connection and method of guiding load. - 3. Bore and stroke required, and length of rod extension (Dimension W, page 9) if greater than standard. - Mounting position of cylinder. If at an angle or vertical, specify the direction of the piston rod. - 5. Operating pressure of the cylinder if limited to less than the standard pressure for the cylinder selected. When specifying a cylinder with a stop tube, please insert an 'S' (Special) and the **net** stroke of the cylinder in the order code, and state the length of the stop tube. Note that net stroke is equal to the gross stroke of the cylinder less the length of the stop tube. The gross stroke determines the envelope dimensions of the cylinder. # **Port Size and Piston Speed** Fluid velocity in connecting lines should be limited to 5m/s to minimise fluid turbulence, pressure loss and 'water hammer' effects. The tables below show piston speeds for standard and oversize ports and connecting lines where the velocity of fluid is 5m/s. If the desired piston speed results in a fluid flow in excess of 5m/s in connecting lines, larger lines with two ports per cap should be considered. Parker recommends that a flow rate of 12m/s in connecting lines should not be exceeded. | | Standard Cylinder Port | | | | | | | | | |-----------|--------------------------------|--------------------------------|-------------------------------------|------------------------|--|--|--|--|--| | Bore
Ø | Port
Size
(BSPP) | Bore of
Connecting
Lines | Cap End Flow
in I/min at
5m/s | Piston
Speed
m/s | | | | | | | 50 | G ¹ / ₂ | 13 | 40 | 0.34
 | | | | | | 63 | G ³ / ₄ | 15 | 53 | 0.28 | | | | | | | 80 | G ³ / ₄ | 15 | 53 | 0.18 | | | | | | | 100 | G1 | 19 | 85 | 0.18 | | | | | | | 125 | G1 | 19 | 85 | 0.12 | | | | | | | 140 | G1¹/₄ | 22 | 114 | 0.12 | | | | | | | 160 | G1 ¹ / ₄ | 22 | 114 | 0.10 | | | | | | | 180 | G1 ¹ / ₄ | 22 | 114 | 80.0 | | | | | | | 200 | G1 ¹ / ₄ | 22 | 114 | 0.06 | | | | | | | 250 | G1 ¹ / ₂ | 28 | 185 | 0.06 | | | | | | | 320 | G2 | 38 | 340 | 0.07 | | | | | | | | | Oversize C | ylinder Port | | |-----------|--------------------------------|--------------------------------|-------------------------------------|------------------------| | Bore
Ø | Port
Size
(BSPP) | Bore of
Connecting
Lines | Cap End Flow
in I/min at
5m/s | Piston
Speed
m/s | | 50 | G ³ / ₄ | 14 | 53 | 0.45 | | 63 | G1 | 19 | 85 | 0.46 | | 80 | G1 | 19 | 85 | 0.28 | | 100 | G1 ¹ / ₄ | 22 | 114 | 0.24 | | 125 | G1 ¹ / ₄ | 22 | 114 | 0.16 | | 140 | G1 ¹ / ₂ | 28 | 185 | 0.20 | | 160 | G1 ¹ / ₂ | 28 | 185 | 0.15 | | 180 | G1 ¹ / ₂ | 28 | 185 | 0.12 | | 200 | G1 ¹ / ₂ | 28 | 185 | 0.10 | | 250 | G2 | 38 | 340 | 0.12 | | 320 | _ | _ | _ | _ | # **Flange Port Sizes** All dimensions are in millimetres unless otherwise stated. # **Port Types** In addition to the standard and oversize BSPP ports, metric threaded ports to ISO 9974-1 and ISO 6149, and flange ports to ISO 6162 can also be supplied – see tables below. The ISO 6149 port incorporates a raised ring in the spot face for identification. Other flange port styles are available on request. | Bore | S | tandard Po | ort | 0 | versize P | ort | |------|--------------------------------|------------|--------------|--------------------------------|-----------|--------------| | Ø | BSPP | Metric | DN
Flange | BSPP | Metric | DN
Flange | | 50 | G ¹ / ₂ | M22x1.5 | 13 | G ³ / ₄ | M27x2 | * | | 63 | G ³ / ₄ | M27x2 | 13 | G1 | M33x2 | * | | 80 | G ³ / ₄ | M27x2 | 13 | G1 | M33x2 | 19 | | 100 | G1 | M33x2 | 19 | G1 ¹ / ₄ | M42x2 | 25 | | 125 | G1 | M33x2 | 19 | G1 ¹ / ₄ | M42x2 | 25 | | 140 | G11/4 | M42x2 | 25 | G11/2 | M48x2 | 32 | | 160 | G1 ¹ / ₄ | M42x2 | 25 | G1 ¹ / ₂ | M48x2 | 32 | | 180 | G1 ¹ / ₄ | M42x2 | 25 | G1 ¹ / ₂ | M48x2 | 32 | | 200 | G11/ ₄ | M42x2 | 25 | G11/2 | M48x2 | 32 | | 250 | G11/2 | M48x2 | 32 | G2 | _ | 38 | | 320 | G2 | _ | 32 | - | _ | 38 | ^{*} Consult factory # **Flange Port Sizes** | Bore | | Sta | ndard Fl | ange P | ort | | |------|---------------------------|-----|----------|--------|-----------------------|---------| | Ø | DN
Flange ¹ | Α | EA | EB | ED | FF
Ø | | 50 | 13 | 47 | | | | | | 63 | 13 | 55 | 17.5 | 38.1 | M8x1.25 | 13 | | 80 | 13 | 68 | | | | | | 100 | 19 | 80 | 22.2 | 47.6 | M10x1.5 | 19 | | 125 | 19 | 97 | 22.2 | 47.0 | IVITUX 1.5 | 19 | | 140 | 25 | 121 | | | | | | 160 | 25 | 129 | 26.2 | 52.4 | M10x1.5 | 25 | | 180 | 25 | 152 | 20.2 | 52.4 | WHUX1.5 | 25 | | 200 | 25 | 160 | | | | | | 250 | 32 | 201 | 30.2 | 58.7 | M12x1.75 ² | 32 | | 320 | 32 | 250 | 30.2 | 56.7 | IVIIZXI./5 | 32 | | Bore | Oversize Flange Port | | | | | | | | | | |------|---------------------------|------------------|---------------------|-------------------|-----------------------|-----------------|--|--|--|--| | Ø | DN
Flange ¹ | Α | EA | EB | ED | FF
Ø | | | | | | 50 | - | _ | - | - | - | - | | | | | | 63 | _ | _ | _ | _ | _ | _ | | | | | | 80 | 19 | 66 | 22.2 | 47.6 | M10x1.5 | 19 | | | | | | 100 | 25 | 79 | - 26.2 | 52.4 | M10x1.5 | 25 | | | | | | 125 | 25 | 97 | 20.2 | 32.4 | 0.1 0.01 101 | 25 | | | | | | 140 | 32 | 120 | | | | | | | | | | 160 | 32 | 128 | 20.0 | E0.7 | M404 7E 2 | 00 | | | | | | 180 | 32 | 151 | 30.2 | 58.7 | M12x1.75 ² | 32 | | | | | | 200 | 32 | 159 | - | | | | | | | | | 250 | 38 ³ | 197 ³ | 06 F 3 | 70.03 | M16v03 | 20.3 | | | | | | 320 | 38 ³ | 248 ³ | - 36.5 ³ | 79.3 ³ | M16x2 ³ | 38 ³ | | | | | ¹ 25 bar to 350 bar series ² M10x1.5 to ISO 6162 (1994) optional ³ 400 bar series # MMA Series # An Introduction to Cushioning Cushioning is recommended as a means of controlling the deceleration of masses, or for applications where piston speeds are in excess of 0.1m/s and the piston will make a full stroke. Cushioning extends cylinder life and reduces undesirable noise and hydraulic shock. Built-in deceleration devices or 'cushions' are optional and can be supplied at the head and cap ends of the cylinder without affecting its envelope or mounting dimensions. Cushions are adjustable via recessed needle valves. # Standard Cushioning Ideal cushion performance shows an almost uniform absorption of energy along the cushion's length. Where specified, MMA cylinders use specially profiled cushions, giving a performance which comes close to the ideal in the majority of applications. The head and cap cushion performance for each bore size is illustrated on the charts on page 19. # Alternative Forms of Cushioning Special designs can be produced to suit applications where the energy to be absorbed exceeds the performance of the standard cushion. Please consult the factory for details. # **Cushion Length** All MMA cylinder cushions incorporate the longest cushion sleeve and spear that can be provided in the standard envelope without decreasing the rod bearing and piston bearing lengths - see table of cushion lengths on page 19. # **Cushion Calculations** The charts on page 19 show the energy absorption capacity for each bore and rod combination at the head (annulus) and the cap (full bore) ends of the cylinder. The charts are valid for piston velocities in the range of 0.1–0.3m/s. For velocities between 0.3m/s–0.5m/s, the energy values from the charts should be reduced by 25%. For velocities of less than 0.1m/s where large masses are involved, and for velocities greater than 0.5m/s, a special cushion profile may be required. Please consult the factory. The cushion capacity of the head end is less than that of the cap, owing to the pressure intensification effect across the piston. The energy absorption capacity of the cushion decreases with drive pressure, which in normal circuits is the relief valve setting. # inPHorm Cushioning requirements can be calculated automatically for individual cylinder/load combinations using the European cylinder inPHorm selection programme HY07-1260/Eur. #### **Formulae** Cushioning calculations are based on the formula: $E = \frac{1}{2}mv^2$ for horizontal applications. For inclined or vertically downward or upward applications, this is modified to: $E = \frac{1}{2}mv^2 + mgl \times 10^{-3} \times sin\alpha$ - for inclined or vertically downward direction of mass; $E = \frac{1}{2}mv^2 - mgl \times 10^{-3} \times sin\alpha$ - for inclined or vertically upward direction of mass. #### Where: E = energy absorbed in Joules g = acceleration due to gravity = 9.81m/s² v = velocity in metres/second I = length of cushion in millimetres (see page 19) m = mass of load in kilogrammes (including piston and rod, see page 19, and rod end accessories, pages 10-12) α = angle to horizontal in degrees p = pressure in bar ### **Example** The following example shows how to calculate the energy developed by masses moving in a straight line. For non-linear motion, other calculations are required; please consult the factory. The example assumes that the bore and rod diameters are already appropriate for the application. The effects of friction on the cylinder and load have been ignored. Selected bore/rod = 80/50mm (no. 1 rod) Cushioning at the cap end Pressure = 150 bar Mass = 7710 kg 0.4m/s Velocity = 45° $Sin\alpha =$ 0.7 Cushion length = 45mm E= $\frac{1}{2}$ mv² + mgl x 10⁻³ x sin α $7710 \times 0.4^2 + 7710 \times 9.81 \times 45 \times 0.7$ 617 + 2383 = 3000 Joules Note: as velocity is greater than 0.3m/s, the energy absorption figures obtained from the charts on page 19 should be reduced by 25% - see Cushion Calculations, above. Comparison with the cushioning chart curve for this cylinder shows an energy capacity for the cap end cushion of 5100 Joules. Reducing this by 25% gives a capacity of 3825 Joules, so the standard cushion can safely decelerate the 3000 Joules in this example. Where cushion performance figures are critical, our engineers can run a computer simulation to determine accurate cushion performance - please contact the factory for details. # **Cushion Energy Absorption Data** The cushion energy absorption capacity data shown below are based on the maximum fatigue-free pressures developed in the cylinder tube. If working life cycle applications of less than 106 cycles are envisaged, then greater energy absorption figures can be applied. Please consult the factory if further information is required. # Head End, No. 1 Rod # Head End, No. 2 Rod # Cap End, No. 1 and No. 2 Rods # **Cushion Length, Piston & Rod Mass** | Bore
Ø | Rod
No. | Rod
Ø | Cushion
Length | Piston & Rod
Zero stroke | Rod per
10mm Stroke
kg | |-----------|------------|------------|-------------------|-----------------------------|------------------------------| | 50 | 1
2 | 32
36 | 30 | 2.0
2.3 | 0.06
0.08 | | 63 | 1
2 | 40
45 | 40 | 3.4
4.0 | 0.10
0.12 | | 80 | 1
2 | 50
56 | 45 | 5.8
6.7 | 0.15
0.19 | | 100 | 1
2 | 63
70 | 55 | 10.7
12.1 | 0.24
0.30 | | 125 | 1 2 | 80
90 | 60 | 20.7
23.8 | 0.39
0.50 | | 140 | 1
2 | 90
100 | 60 | 28.0
31.0 | 0.50
0.62 | | 160 | 1 2 | 100
110 | 65 | 40.1
44.6 | 0.62
0.75 | | 180 | 1
2 | 110
125 | 65 | 54.0
62.0 | 0.75
0.96 | | 200 | 1
2 | 125
140 | 65 | 76.2
86.0 | 0.96
1.23 | | 250 | 1
2 | 160
180 | 90 | 131.8
150.2 | 1058
2.00 | | 320 | 1
2 | 200
220 | 100 | 250.2
279.7 | 2.46
2.98 | # Seals and Fluid Data See also Gland and Piston Seal Options, page 4 | Fluid
Group | Seal Materials – a combination of: | Fluid Medium to ISO 6743/4-1982 | Piston & Gland
Type | Temperature
Range | |----------------
---|---|-----------------------------|----------------------| | 1 | Nitrile (NBR), PTFE,
enhanced polyurethane (AU) | Mineral Oil HH, HL, HLP, HLP-D, HM, HV,
MIL-H-5606 oil, air, nitrogen | All | -20°C to +80°C | | 2 | Nitrile (NBR), PTFE | Water glycol (HFC) | Chevron and
Low Friction | -20°C to +60°C | | 5 | Fluorocarbon elastomer (FPM),
PTFE | Fire resistant fluids based on phosphate esters (HFD-R). Also suitable for hydraulic oil at high temperatures or in hot environments. Not suitable for use with Skydrol. See fluid manufacturer's recommendations. | Chevron and
Low Friction | -20°C to +150°C | | 6 | Various compounds including nitrile,
enhanced polyurethane, fluorocarbon | Water
Oil in water emulsion 95/5 (HFA) | Chevron and
Low Friction | +5°C to +55°C | | 7 | elinanced polydretriane, lidorocarbon
elastomers and PTFE | Water in oil emulsion 60/40 (HFB) | Chevron and
Low Friction | +5°C to +60°C | #### **Special Seals** A range of seal options is available for the fluid groups listed above – see How to Order on page 23. Where required, special seals, in addition to those listed above, can also be supplied. Please insert an S (Special) in the model number and specify the fluid medium when ordering. #### **Group 6 Seal Life** Seal life is reduced with High Water Content Fluids (HFA) due to the poor lubricity of the operating medium. Note that seal life also declines as pressure increases. #### **Water Service** Special modifications are available for high water content fluids. These include a stainless steel piston rod, and plating of internal surfaces. When ordering, please specify the maximum operating pressure or load/speed conditions, as the stainless steel rod is of lower tensile strength than the standard material. #### **Filtration** Fluid cleanliness should be in accordance with ISO 4406. The quality of filters should be in accordance with the appropriate ISO standards. The rating of the filter media depends on the system components and the application. The minimum required should be class 19/15 to ISO 4406, which equates to 25μ (β 10 \geq 75) to ISO 4572. #### Warranty Parker Hannifin warrants cylinders modified for water or high water content fluid service to be free of defects in materials or workmanship, but cannot accept responsibility for premature failure caused by excessive wear resulting from lack of lubricity, or where failure is caused by corrosion, electrolysis or mineral deposits within the cylinder. # Repairs Although MMA cylinders are designed to make on site maintenance or repairs as easy as possible, some operations should only be carried out in our factory. It is standard policy to fit a cylinder returned to the factory for repair with those replacement parts which are necessary to return it to 'as good as new' condition. Should the condition of the returned cylinder be such that the expense would exceed the cost of a new one, you will be notified. # **Service Kits** When ordering service kits, please refer to the identification plate on the cylinder body, and supply the following information: Serial Number - Bore - Stroke - Model Number - Fluid Type # **Key to Part Numbers** - Head - 7 Cap - Standard and Low Friction gland 14a - 14b Chevron gland - 15 Cylinder tube - Piston 17 - Chevron piston head end 17a - 17b Chevron piston - cap end - Cushion sleeve 18 - 19 Front/rear flange - 23 - 132 Energising ring for Low Friction piston seal 131 - Wear ring for Low Friction piston 133 - O-ring back up washer (gland/head) 134 - 136 Gland securing screw - 137 Chevron rod seal assembly - Back up washer Chevron rod seal assembly 138 - 139a Wear ring for Chevron gland - 139b Wear rings for Chevron gland - 140a Wear ring for Standard gland - 140b Wear rings for Standard gland - Wear ring for Low Friction gland 141a 141b - Wear rings for Low Friction gland 142 - Chevron piston bearing ring - 143 Chevron piston seal assembly - Gland retainer (secured by screws or threaded) 27 - 34 Piston rod - single rod, no cushion - 35 Piston rod - single rod, cushion at head end - 36 Piston rod – single rod, cushion at cap end - 37 Piston rod - single rod, cushion at both ends - 40 Gland wiperseal - 41 Lipseal - O-ring (gland/head) 45 - O-ring, piston/rod (2 off Chevron piston) 46 - Back-up washer for cylinder body O-ring 26 47 - 55 Piston locking pin - 69a Cushion needle valve cartridge sealing washer - Cushion needle valve cartridge 70a - 73 Floating cushion bush - 74 Cushion bush retaining ring - 123 Stepseal - Pre-load ring for stepseal 123 124 - 125 Standard piston seal - Energising ring for Standard seal 125 126 - Wear ring for Standard piston 127 - 131 Low Friction piston seal Standard Piston **Chevron Gland & Seals** **Chevron Piston** # 'Mill Type' Cylinders MMA Series # **Contents and Part Numbers of Service Kits** See key to part numbers on page 21. **Gland Service Cartridge Kit, Standard and Loadholding Seals** Contains items 14a, 40, 41, 45, 123, 124, 134, 140a, and two of 140b. **Gland Service Cartridge Kit, Chevron Seals** Contains items 14b, 40, 45, 134, 137, 138, 139a, and two of 139b. **Gland Service Cartridge Kit, Low Friction Seals** Contains items 14a, 40, 45, 134, 141a, and two each of 123, 124, 141b. **Gland Service Kit, Standard and Loadholding Seals** Contains items 40, 41, 45, 123, 124, 134, 140a, and two of 140b. **Gland Service Kit, Chevron Seals** Contains items 40, 45, 134, 137, 138, 139a, and two of 139b. **Gland Service Kit, Low Friction Seals** Contains items 40, 45, 134, 141a, and two each of 123, 124, 141b. **Piston Service Kit, Standard Seals** Contains items 125, 126, and two of 26, 47 and 127. **Piston Service Kit, Chevron and Loadholding Seals** Contains items 55, 142, and two each of 26, 46, 47 and 143. **Piston Service Kit, Low Friction Seals** Contains items 131, 132, and two of 26, 47 and 133. # **Optional Seal Groups - Ordering** The order codes listed for Chevron and Low Friction service kits contain standard, Group 1 seals. To order kits with other classes of seals, see page 20, replace the last digit of the part number shown with the number of the service group required. Eg: RGF210MMA0701, containing a Group 1 seal, becomes RGF210MMA0705 when it contains a Group 5 seal. # Service Kit Order Codes - Piston | Bore | Piston Service Kit | | | | | | |------|---------------------|--------------------------------|-----------------------|--|--|--| | Ø | Standard
Seals * | Chevron &
Loadholding Seals | Low Friction
Seals | | | | | 50 | PN050MMA01 | PLL050MMA01 | PF2050MMA01 | | | | | 63 | PN063MMA01 | PLL063MMA01 | PF2063MMA01 | | | | | 80 | PN080MMA01 | PLL080MMA01 | PF2080MMA01 | | | | | 100 | PN100MMA01 | PLL100MMA01 | PF2100MMA01 | | | | | 125 | PN125MMA01 | PLL125MMA01 | PF2125MMA01 | | | | | 140 | PN140MMA01 | PLL140MMA01 | PF2140MMA01 | | | | | 160 | PN160MMA01 | PLL160MMA01 | PF2160MMA01 | | | | | 180 | PN180MMA01 | PLL180MMA01 | PF2180MMA01 | | | | | 200 | PN200MMA01 | PLL200MMA01 | PF2200MMA01 | | | | | 250 | PN250MMA01 | PLL250MMA01 | PF2250MMA01 | | | | | 320 | PN320MMA01 | PLL320MMA01 | PF2320MMA01 | | | | # Service Kit Order Codes - Glands | Bore
Ø | Rod
No. | Rod
Ø | Gland Service Cartridge Kit | | | Gland Service Kit | | | |-----------|------------|------------|-----------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | | | | Standard &
Loadholding Seals * | Chevron
Seals | Low Friction
Seals | Standard & Loadholding Seals * | Chevron
Seals | Low Friction
Seals | | 50 | 1
2 | 32
36 | RGN05MMA0321
RGN05MMA0361 | RGLL05MMA0321
RGLL05MMA0361 | RGF205MMA0321
RGF205MMA0361 | RKN05MMA0321
RKN05MMA0361 | RKLL05MMA0321
RKLL05MMA0361 | RKF205MMA0321
RKF205MMA0361 | | 63 | 1
2 | 40
45 | RGN06MMA0401
RGN06MMA0451 | RGLL06MMA0401
RGLL06MMA0451 | RGF206MMA0401
RGF206MMA0451 | RKN06MMA0401
RKN06MMA0451 | RKLL06MMA0401
RKLL06MMA0451 | RKF206MMA0401
RKF206MMA0451 | | 80 | 1 2 | 50
56 | RGN08MMA0501
RGN08MMA0561 | RGLL08MMA0501
RGLL08MMA0561 | RGF208MMA0501
RGF208MMA0561 | RKN08MMA0501
RKN08MMA0561 | RKLL08MMA0501
RKLL08MMA0561 | RKF208MMA0501
RKF208MMA0561 | | 100 | 1 2 | 63
70 | RGN10MMA0631
RGN10MMA0701 | RGLL10MMA0631
RGLL10MMA0701 | RGF210MMA0631
RGF210MMA0701 | RKN10MMA0631
RKN10MMA0701 | RKLL10MMA0631
RKLL10MMA0701 | RKF210MMA0631
RKF210MMA0701 | | 125 | 1 2 | 80
90 | RGN12MMA0801
RGN12MMA0901 | RGLL12MMA0801
RGLL12MMA0901 | RGF212MMA0801
RGF212MMA0901 | RKN12MMA0801
RKN12MMA0901 | RKLL12MMA0801
RKLL12MMA0901 | RKF212MMA0801
RKF212MMA0901 | | 140 | 1 2 | 90
100 | RGN14MMA0901
RGN14MMA1001 | RGLL14MMA0901
RGLL14MMA1001 | RGF214MMA0901
RGF214MMA1001 | RKN14MMA0901
RKN14MMA1001 | RKLL14MMA0901
RKLL14MMA1001 | RKF214MMA0901
RKF214MMA1001 | | 160 | 1 2 | 100
110 | RGN16MMA1001
RGN16MMA1101 | RGLL16MMA1001
RGLL16MMA1101 | RGF216MMA1001
RGF216MMA1101 | RKN16MMA1001
RKN16MMA1101 | RKLL16MMA1001
RKLL16MMA1101 | RKF216MMA1001
RKF216MMA1101 | | 180 | 1 2 | 110
125 | RGN18MMA1101
RGN18MMA1251 | RGLL18MMA1101
RGLL18MMA1251 | RGF218MMA1101
RGF218MMA1251 | RKN18MMA1101
RKN18MMA1251 | RKLL18MMA1101
RKLL18MMA1251 | RKF218MMA1101
RKF218MMA1251 | | 200 | 1 2 | 125
140 | RGN20MMA1251
RGN20MMA1401 | RGLL20MMA1251
RGLL20MMA1401 | RGF220MMA1251
RGF220MMA1401 | RKN20MMA1251
RKN20MMA1401 | RKLL20MMA1251
RKLL20MMA1401 | RKF220MMA1251
RKF220MMA1401 | | 250 | 1 2 | 160
180 | RGN25MMA1601
RGN25MMA1801
 RGLL25MMA1601
RGLL25MMA1801 | RGF225MMA1601
RGF225MMA1801 | RKN25MMA1601
RKN25MMA1801 | RKLL25MMA1601
RKLL25MMA1801 | RKF225MMA1601
RKF225MMA1801 | | 320 | 1
2 | 200
220 | RGN32MMA2001
RGN32MMA2201 | RGLL32MMA2001
RGLL32MMA2201 | RGF232MMA2001
RGF232MMA2201 | RKN32MMA2001
RKN32MMA2201 | RKLL32MMA2001
RKLL32MMA2201 | RKF232MMA2001
RKF232MMA2201 | ^{*} Only available with Group 1 seals ### **How To Order** # Key Required for basic cylinder Indicate optional features or leave blank # Ports, Air Bleeds and Cushion **Adjustment Location** As standard, port location is position 1, as shown on pages 5 to 8. Cushion adjustment needle valves, where specified, are at position 2. # **Accessories** Please state on order whether accessories are to be assembled to cylinder or supplied separately. # Parker Worldwide #### **Europe, Middle East, Africa** AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com **AT – Austria,** Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com AT - Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com **AZ - Azerbaijan,** Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com **BE/LU – Belgium,** Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com **BY - Belarus,** Minsk Tel: +375 17 209 9399 parker.belarus@parker.com **CH – Switzerland,** Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com **CZ - Czech Republic,** Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com **DE - Germany,** Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com **DK - Denmark,** Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com **ES - Spain,** Madrid Tel: +34 902 330 001 parker.spain@parker.com FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com **GR - Greece**, Athens Tel: +30 210 933 6450 parker.greece@parker.com **HU - Hungary,** Budapest Tel: +36 1 220 4155 parker.hungary@parker.com IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com **KZ – Kazakhstan,** Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com **NL - The Netherlands,** Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com **NO - Norway,** Asker Tel: +47 66 75 34 00 parker.norway@parker.com **PL - Poland,** Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com **RO – Romania,** Bucharest Tel: +40 21 252 1382 parker.romania@parker.com **RU – Russia,** Moscow Tel: +7 495 645-2156 parker.russia@parker.com **SE - Sweden,** Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com **SK – Slovakia,** Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com **SL – Slovenia,** Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com **TR – Turkey,** Istanbul Tel: +90 216 4997081 parker.turkey@parker.com **UA – Ukraine,** Kiev Tel +380 44 494 2731 parker.ukraine@parker.com **UK – United Kingdom,** Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com **ZA – South Africa,** Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com #### **North America** **CA – Canada,** Milton, Ontario Tel: +1 905 693 3000 US - USA, Cleveland (industrial) Tel: +1 216 896 3000 **US – USA,** Elk Grove Village (mobile) Tel: +1 847 258 6200 #### **Asia Pacific** **AU – Australia,** Castle Hill Tel: +61 (0)2-9634 7777 **CN - China,** Shanghai Tel: +86 21 2899 5000 **HK - Hong Kong** Tel: +852 2428 8008 **IN - India,** Mumbai Tel: +91 22 6513 7081-85 **JP - Japan,** Fujisawa Tel: +81 (0)4 6635 3050 **KR - South Korea,** Seoul Tel: +82 2 559 0400 **MY - Malaysia,** Shah Alam Tel: +60 3 7849 0800 **NZ – New Zealand,** Mt Wellington Tel: +64 9 574 1744 **SG - Singapore** Tel: +65 6887 6300 **TH - Thailand,** Bangkok Tel: +662 717 8140 **TW – Taiwan,** Taipei Tel: +886 2 2298 8987 # **South America** **AR - Argentina,** Buenos Aires Tel: +54 3327 44 4129 **BR - Brazil,** Cachoeirinha RS Tel: +55 51 3470 9144 **CL - Chile,** Santiago Tel: +56 2 623 1216 **MX - Mexico,** Apodaca Tel: +52 81 8156 6000 © 2013 Parker Hannifin Corporation. All rights reserved. Catalogue HY07-1210/UK POD 04/2013 ZZ EMEA Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA) US Product Information Centre Toll-free number: 1-800-27 27 537 www.parker.com